A decomposition of the bifractional Brownian motion and some applications
نویسندگان
چکیده
In this paper we show a decomposition of the bifractional Brownian motion with parameters H,K into the sum of a fractional Brownian motion with Hurst parameter HK plus a stochastic process with absolutely continuous trajectories. Some applications of this decomposition are discussed.
منابع مشابه
Sample Path Properties of Bifractional Brownian Motion
Let B = { B(t), t ∈ R+ } be a bifractional Brownian motion in R. We prove that B is strongly locally nondeterministic. Applying this property and a stochastic integral representation of B , we establish Chung’s law of the iterated logarithm for B , as well as sharp Hölder conditions and tail probability estimates for the local times of B . We also consider the existence and the regularity of th...
متن کاملMultidimensional bifractional Brownian motion: Ito and Tanaka formulas
Using the Malliavin calculus with respect to Gaussian processes and the multiple stochastic integrals we derive Itô’s and Tanaka’s formulas for the d-dimensional bifractional Brownian motion. 2000 AMS Classification Numbers: 60G12, 60G15, 60H05, 60H07.
متن کاملAn Extension of Bifractional Brownian Motion
In this paper we introduce and study a self-similar Gaussian process that is the bifractional Brownian motion BH,K with parameters H ∈ (0, 1) and K ∈ (1, 2) such that HK ∈ (0, 1). A remarkable difference between the case K ∈ (0, 1) and our situation is that this process is a semimartingale when 2HK = 1.
متن کاملOn the bifractional Brownian motion
This paper is devoted to analyze several properties of the bifractional Brownian motion introduced by Houdré and Villa. This process is a self-similar Gaussian process depending on two parameters H and K and it constitutes a natural generalization of the fractional Brownian motion (which is obtained for K = 1). We adopt the strategy of the stochastic calculus via regularization. Particular inte...
متن کاملEffects of Brownian motion and Thermophoresis on MHD Mixed Convection Stagnation-point Flow of a Nanofluid Toward a Stretching Vertical Sheet in Porous Medium
This article deals with the study of the two-dimensional mixed convection magnetohydrodynamic (MHD) boundary layer of stagnation-point flow over a stretching vertical plate in porous medium filled with a nanofluid. The model used for the nanofluid incorporates the effects of Brownian motion and thermophoresis in the presence of thermal radiation. The skin-friction coefficient, Nusselt number an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008